Recent Progress in Numerical Methods for the Poisson- Boltzmann Equation in Biophysical Applications
نویسندگان
چکیده
Efficiency and accuracy are two major concerns in numerical solutions of the Poisson-Boltzmann equation for applications in chemistry and biophysics. Recent developments in boundary element methods, interface methods, adaptive methods, finite element methods, and other approaches for the Poisson-Boltzmann equation as well as related mesh generation techniques are reviewed. We also discussed the challenging problems and possible future work, in particular, for the aim of biophysical applications. AMS subject classifications: 52B10, 65D18, 68U05, 68U07
منابع مشابه
Electrostatic analysis of the charged surface in a solution via the finite element method: The Poisson-Boltzmann theory
Electrostatic potential as well as the local volume charge density are computed for a macromolecule by solving the Poisson-Boltzmann equation (PBE) using the finite element method (FEM). As a verification, our numerical results for a one dimensional PBE, which corresponds to an infinite-length macromolecule, are compared with the existing analytical solution and good agreement is found. As a ma...
متن کاملAn algebraic calculation method for describing time-dependent processes in electrochemistry – Expansion of existing procedures
In this paper an alternative model allowing the extension of the Debye-Hückel Theory (DHT) considering time dependence explicitly is presented. From the Electro-Quasistatic approach (EQS) introduced in earlier studies time dependent potentials are suitable to describe several phenomena especially conducting media as well as the behaviour of charged particles (ions) in electrolytes. This leads t...
متن کاملExtensions to Study Electrochemical Interfaces - A Contribution to the Theory of Ions
In the present study an alternative model allows the extension of the Debye-Hückel Theory (DHT) considering time dependence explicitly. From the Electro-Quasistatic approach (EQS) done in earlier studies time dependent potentials are suitable to describe several phenomena especially conducting media as well as the behaviour of charged particles in arbitrary solutions acting as electrolytes. Thi...
متن کاملNumerical solution and simulation of random differential equations with Wiener and compound Poisson Processes
Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...
متن کاملThe MWF method for kinetic equations system
Many physical or biological phenomena deal with the dynamics of interacting entities. These class of phenomena are well described in physics, using a kinetic approach based on Boltzmann equation. A Generalized Kinetic theory has been proposed to extend this approach to biological scenarios. An analytical solution of Boltzmann equation can be found only in very simple cases, so numerical methods...
متن کامل